首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7211篇
  免费   695篇
  国内免费   884篇
  2023年   110篇
  2022年   127篇
  2021年   195篇
  2020年   240篇
  2019年   248篇
  2018年   227篇
  2017年   258篇
  2016年   271篇
  2015年   260篇
  2014年   272篇
  2013年   418篇
  2012年   288篇
  2011年   282篇
  2010年   254篇
  2009年   299篇
  2008年   370篇
  2007年   381篇
  2006年   359篇
  2005年   302篇
  2004年   297篇
  2003年   316篇
  2002年   238篇
  2001年   259篇
  2000年   202篇
  1999年   252篇
  1998年   182篇
  1997年   213篇
  1996年   169篇
  1995年   144篇
  1994年   113篇
  1993年   116篇
  1992年   131篇
  1991年   111篇
  1990年   117篇
  1989年   93篇
  1988年   109篇
  1987年   79篇
  1986年   65篇
  1985年   78篇
  1984年   82篇
  1983年   45篇
  1982年   43篇
  1981年   37篇
  1980年   48篇
  1979年   17篇
  1978年   14篇
  1977年   19篇
  1976年   8篇
  1975年   8篇
  1973年   8篇
排序方式: 共有8790条查询结果,搜索用时 15 毫秒
1.
2.
Net productivity of vegetation is determined by the product of the efficiencies with which it intercepts light (?i) and converts that intercepted energy into biomass (?c). Elevated carbon dioxide (CO2) increases photosynthesis and leaf area index (LAI) of soybeans and thus may increase ?i and ?c; elevated O3 may have the opposite effect. Knowing if elevated CO2 and O3 differentially affect physiological more than structural components of the ecosystem may reveal how these elements of global change will ultimately alter productivity. The effects of elevated CO2 and O3 on an intact soybean ecosystem were examined with Soybean Free Air Concentration Enrichment (SoyFACE) technology where large field plots (20‐m diameter) were exposed to elevated CO2 (~550 μmol mol?1) and elevated O3 (1.2 × ambient) in a factorial design. Aboveground biomass, LAI and light interception were measured during the growing seasons of 2002, 2003 and 2004 to calculate ?i and ?c. A 15% increase in yield (averaged over 3 years) under elevated CO2 was caused primarily by a 12% stimulation in ?c , as ?i increased by only 3%. Though accelerated canopy senescence under elevated O3 caused a 3% decrease in ?i, the primary effect of O3 on biomass was through an 11% reduction in ?c. When CO2 and O3 were elevated in combination, CO2 partially reduced the negative effects of elevated O3. Knowing that changes in productivity in elevated CO2 and O3 were influenced strongly by the efficiency of conversion of light energy into energy in plant biomass will aid in optimizing soybean yields in the future. Future modeling efforts that rely on ?c for calculating regional and global plant productivity will need to accommodate the effects of global change on this important ecosystem attribute.  相似文献   
3.
This study surveys the micromorphological surface structure of the leaves of the conifer genusAgathis (Araucariaceae) from throughout the range of the genus (Malaysia to New Zealand and Fiji) as seen with the scanning electron microscope. These data confirm that the vegetative parts ofAgathis are taxonomically highly conservative, but suggest the Melanesian and New Zealand elements to be distinctive from those of the rest of the genus, and from one another. Conclusions are compared with those that have been derived from studies based on other characters.  相似文献   
4.
Summary A field experiment was conducted using15N-labelled urea on a Reddish Brown Lateritic (Peleustult) soil. Growing two crops on flat land and on soil ridges of 15 cm height produced similar comparative effects from fertilizer on maize. However, fertilizer applied by broadcasting on maize with a 50 cm effective band followed by incorporating was more useful to mungbean than that applied by banding below the cereal seed rows when crops were grown on flat land. The reverse was observed when crops were grown on ridges. It was deduced that the maize cultivar was not likely to affect comparative efficiencies of fertilizer. For fertilizer application at sowing, broadcasting in 50 cm maize effective band followed by incorporating was slightly superior to banding below maize seed rows. Side-dressing of fertilizer to maize at 4 weeks after sowing was superior to application at sowing. Evenly-split application, at sowing and at 4 weeks after sowing, was either only slightly superior or comparable to non-split application by banding below maize seed rows at sowing, depending on placement method of the first application. Soil moisture status as a possible factor rendering discrepancy in the comparative efficiencies obtained by different authors is discussed.  相似文献   
5.
Heat stress reduces maize yield and several lines of evidence suggest that the heat lability of maize endosperm ADP-glucose pyrophosphorylase (AGPase) contributes to this yield loss. AGPase catalyzes a rate-limiting step in starch synthesis. Herein, we present a novel maize endosperm AGPase small subunit variant, termed BT2-TI that harbors a single amino acid change of residue 462 from threonine to isoleucine. The mutant was isolated by random mutagenesis and heterologous expression in a bacterial system. BT2-TI exhibits enhanced heat stability compared to wildtype maize endosperm AGPase.The TI mutation was placed into another heat-stable small subunit variant, MP. MP is composed of sequences from the maize endosperm and the potato tuber small subunit. The MP-TI small subunit variant exhibited greater heat stability than did MP. Characterization of heat stability as well as kinetic and allosteric properties suggests that MP-TI may lead to increased starch yield when expressed in monocot endosperms.  相似文献   
6.
The Indochinese silvered langur (Trachypithecus germaini) is distributed to the west of Mekong River in Cambodia, Lao PDR, Thailand and Vietnam. During a two‐year study, from May 2014 to May 2016, we collected 320.44 hr of behavior, with 17,040 feeding bouts recorded (142 hr) for T. germaini on Chua Hang Karst Mountain, Kien Luong District, Kien Giang Province, Vietnam. Feeding accounted for 45% of the Indochinese silvered langurs’ activity budget. The plant diet of the Indochinese silvered langurs was principally composed of young leaves (58%), followed by mature leaves (9.5%), fruits (22.7%), flowers (4.7%), buds (3.3%), petioles (1.2%), and other (0.5%). A total of 58 plant species were fed on by the silvered langurs, and leaves of eight species (Phyllathus reticulatus, Ficus rumphii, Ficus tinctoria, Ficus microcarpa, Cayratia trifolia, Streblus ilicifolia, Combretum latifolium, and Streblus asper) were fed on throughout the year. P. reticulatus was most frequently eaten (13.9% feeding time, n = 1,733). Food selection differed significantly between months and seasons. The Indochinese silvered langurs ate 27 plant species in the wet season compared with 23 plant species in the dry season. Leaf chemical composition of two food categories, 16 eaten species (with 10 most frequently consumed species and six least consumed species), and four noneaten species, were analyzed. Feeding samples from eaten species in the Indochinese silvered langurs's diet contained lower amounts of condensed tannin, lignin, protein, ash, and lipids, but a higher amount of total sugar compared with samples from noneaten species. Furthermore, the most frequently consumed species contained lower amounts of lignin compared with the less frequently consumed species. Using a generalized linear model with five variables, including neutral detergent fiber (NDF), total sugar, lignin, lipid, and calcium (Ca) indicated that NDF positively correlated and lignin content negatively correlated with feeding records in the diet of these langur.  相似文献   
7.
8.
Markovska  Y.K.  Dimitrov  D.S. 《Photosynthetica》2001,39(2):191-195
For the first time the expression of C3 and CAM in the leaves of different age of Marrubium frivaldszkyanum Boiss, is reported. With increasing leaf age a typical C3 photosynthesis pattern and high transpiration rate were found. In older leaves a shift to CAM occurred and the 24-h transpiration water loss decreased. A correlation was established between leaf area and accumulation of malate. Water loss at early stages of leaf expansion may be connected with the shift to CAM and the water economy of the whole plant.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号